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SUMMABIIJITY IN BA}I.ACH IJATTICES
BY

CONSTANTIN NICUI.,ESCU

T}r'e M- and tr-spaces are characterized by their properties of summability. An
example of Banach space which cannot be realised as a Banach lattice is present-
ed also.

1. INTRODUCTION

In [5] Dvoretzky and Bogers remarked that a Banach space Z which
yerifies the conclition lrlzf : tt{Z) (we use the Pietsch's notations in [25])
is isomorphic to a space of finite dimension. A more precise result was
obtainetl by Grothendieck [8]: a locally convex Frdchet vector space X
is nuclear if antl only if flxf : I'{X\. In the present paper we split
Grothendieck's condition of summability by giving suitable conditions
for the spaces Lo(V) @apositive Radon measure and. 1<p < o) antl
C(S). Our results are motivated by the local structuro of nuclear lattices.
See section 5 below for d.etails.

Before stating explicitely these results we shall define the terms
a,ppearing.

8y a Banach lattice we shall mean a Banach space which is also a
vector lattice and in addition :

lol < lyl, implies llrll < llyll.

An example of Banach space which cannot be realisecl as Banach
lattice will be presented in the Appentlix.

'We shall denote by l'{X\ (X a Banach space and 1 < p < oo) the
vector space of all sequences {r"\ of. elements of X such that :

Xllo,ll" < o

tr'or all the problems concerning the summability or nuclearity
we refer to [8] anct [25].

Other notations:
-Q.(Er I) : the vector space of all continuous linear operators from -E

to -8. Here E and.I are two locally convex llausdorff spaces
E* - 2.(E,Rl

C(S) : the Banach lattice (with the sup norm) of all continuous real
functions definetL on the compact Hausdorff space B.
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Lo(pl : the oompletion (*itn respect to the norm ll/ll, : (l't,,.-)1
of the"space of all continuous real funotions /: B -+ lR having
a compact support. Here g, denotes a positive Badon mea-
sure defined on the locally compact llaustlorff space B

In : l'{R\, 1(p( @r

TVe can now present a brief survey of the main results obtained.
Tnnolnnu. A Banach latti,ce Z i,s algebrai,cal,lg toTtologicallg latti,ce

i,som.orphic to a space L'(il ff anil anly i,f it satisfies the followi,ng statem,emts :

(L'. a) {u^})elLlZ)t n*2 0 implies {a"})el'{Z}nf@l
(Lo. b) lll,uollo ( yI lla,lle

tor eoerg ti,ni,te fami,Ig {ur\, of ilisjoint elements oI Z,.t being a positi,oa
constant nphi,ch ilepenils onl,g on Z.

As a consequence of this result we shall prove (Bemark 3.? below)
the lattice invariance principle for Hilbert spaces.

The question of summability of certain kinds of sequences in a
space Ze(p,) has been considered before by various authors. Ilere we men-
tion only Orlicz's result in [2a] : I:f. {n^\* is a summable sequenoe in

-t'(pt) then ! llr"llt(') ( co where t(p):2 if 1< p {2 and. y(pt).:p

rf p 7 2, Tbo exponents y(p\ arc the best possible i.e. they cannot be
replaced by smaller constants.

Another class of Banach lattices which ad.mit a characterization by
summability is tho class of all order o-complete Banach lattices having
an order continuous topology. In the next section we shall provo tho
following result :

Tnnonnu. Ior an E orilereil Banaoh space whi,ch i,e also a 6-corn-
plete aector l,atti,ce the followi,ng statementt are equioalent z

(i) a"),0 (i,n oril,er) i,mpltes an->0 togtologi,callg.
(ii) Eoery oril,er interoal, i,n E i,s relati,oelg weakly compact,
(iii) {o,},, elrnlBl n* } 0 i,mpl,i,es {u,),etr(E).
gere tilDl denotes the veotor space of all {r,}o.f[E] such that

for a suitable ueE, u )0, we have:

El^l ( r'
whonever if C IN a finite subset.

Concerning the M-spaces i.e. the closed vector sublattices of . a
space C(B) it was conjectured. r that they are characterizecl (up to an alge-
braic topologio lattice isomorphism) by the following condition

(aM) {n,}*ell[-E] implies {lr,l} * eltlD).

I See [11]



SII!/BtrABIil.ITY IN BANACiII I,.ATTICES 1113

One oan show (see seotion 4 below) that this problem is equiva-
lent to the following : I-,et E be a Banach lattice. Suppose that every posi-
tive operator I eA(Erll) is absolutely summing. Need. every positive
operator T e2.(8, t1) be nuclear?

An a-trf-space i.e. a Banach lattico which verifies the cond.ition' (aMl
above, cannot be isomorphic to a space l' (1 < p < a). The conjugate of
an o-trf-space is a Banach lattice with an order continuous topology. See
section 4 below for details

The author thanks Dr. Popa Nicolae for many valuable sugges-
tions.

2. BANACE LATTICES HAVING AN ONDER CONTINUOUS TOPOLOGY

A Banach lattice -D is saial to have an oriler eont'tnuous toptologg if :

r, { 0 (in order) implies no + O, topologically.

The usual examples are the space I'(p) (1 < ? < o) antl co, the
Banach lattice of all null sequenoes of real numbers. A characterization
for all the o-complete Banach lattices having an order continuous toplogy
was obtained in l2f l. In the next we obtain this characterization by using
the order eontinuous oPerators:

2.1. PnoposrrroN. Let X, Z be two orilereil Banach sp,Mes, Z being
suptposeil in ailili,ti,on a o-compflate oector latti,ce. Then for A e 2(2, X) U > O,

the lollowing statements ore egui,oalent z

(a) A maps the oriler interoals of Z into relatioelg weaklg compaat
subeets oI X.

(b', ry {zr}, is a ilecvea$ng sequence of positioe elements of Z then

{U"^\, is a conttergent seguenee.

Proof. tr'or a eZ, z ) 0, consider the following vector space:

Z, : {U eZ; lyl ( Ia for suitable r } 0},

normed. by:
llslL : inf {r > o; lY I < ra}.

Then Zo is an abstract M-space in the terminology of Kakutani [13]'
and therefore it is isometric and lattice isomorphic to a space C(8,) for
S, a suitable coirpact Hausdorff spaco. Denote by a 

"tbla 
following produet

of operators:

z,\z\x.
E.ere 'io denotes the canonical embetltling.

The assertion (a) above is equivalent to the following:
(a') The operators Uu, z 2 0, are all weakly compact-
Then the equivalency (a') o (b) follows immetliately from an earlier

result due to Grothenclieck [7] Theorem 6.
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tr'or a .+ b we present a direct proof. Let {z*\* be a decreasing sequen-
ce of positive elements of Z. Since a > 0 it follows that { Ua"}" is a weaklv
Cauchy sequence in Z. On the other hand (o) implies that { Uz^\ois contain-
ed in a weakly compact subset of Z. Thercfore { Uzn\nis a weikly conyer-
gent sequenoe of positive elements of. Z. It is also a decreasing s€quence
and thus the generalized. Dini's theorem (see [29] ch. Y, 4.3) implies tnat
this sequence js also convergentr e.e.d.

2.2. Cowtnexv. Let Z be an ord,ereil Banach space nnhi,ch is also a
o-compl,ete oector latti,ce. Tha followi,ng statements are equioalent:

(7) Et:ery ord,er ,interc)al of Z i,s relati,oely weakly compact.
(2) Ihe topology of Z is oriler continuous.
2.3. Remark. The conditions (1) and (2) above are equivalent to the

following:
(3) {n,\^ e tLlzl, rn 2 0 implies {n^)^ e IL(Z)

In fact Orlicz's result in [23] concerning the uncond.itionally weakly
convergent series 2 shows that (1) = (3). On the other hand (3) .+ (2),
since if we consid.er a sequence n*eZ, n,2 0 and. nn{0 (in order), then
the series (nr-nz)*(nr-n)*... defines an.element cf lLLZl,

q.e.al.

2.4. Bemark.Let Z be qn ord.er o-complete Banach lattice which is
also a separable dual. Then Z has ord.er continuous topology. In fact, it
was remarked in [7] that every 

" 
e L (C(B), Z] is a weakly compact opera-

tor whenever B is a compact Hauselorff space. By consitlering the spaces
Zo as above it follows that every order interval in Z is relatively weakly
compact q.e.d.

3. CEARACTEIIZATI$N OF Z,!(p) BY SUMiilABILITY

A Banach lattice J? is saicl tobe an abstract Le-tpaee (1 < p < @) if
the topology and the order are related" by:

n, g eE inf ( lol, lyl) : 0 implies lln * yll' : llrli'* llgll".

Marti [18] anct Bernau [34] have remarked that every abstract Z"-
space is equivalent to a space Z'(g,) for p, a suitable positive Radon measure.
Ilowever several special cases were proved earlier. X'or example the case
p : L was illuminatetL by Kakutani [12]. Bohnenblust [2] considers the
case of the separable Banach lattices order o-complete

Joint characterizations of -t"- and. -tr4-spaces were obtainetl in [2]t
[32], etc.

2 We recall this result : Let X be a Banach space and lrrl* ^ sequence of elements
of X. Suppose that for every increasing sequence ni, i e [rl, of intigeis the series I'xn. is weakly
convergent. Then for every increasingsequence n6, tetlrl, of integersthe series Xcr. is con-
vergent in X.

ttt4
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In the next the abstract Zt-spaces are characterized by their summa-
bility properties. The oase g : L was treated independently by Schlotter-
beck [30]:

3.1. TrnonEM. A Banach latti,oaEi,stogtologically algebrai,callgl,atti,ae
isornorphic to an abstract Le-spaco i,f, anil only if, E sati,sti,es tke tal,lowi,ngconili,ti,ons: -

' (Lo.a) {a"}"etLlZ,l, n*} 0 implies {rn}". P{n}nE@)
(L'.b) ll Xr,ll' ( 1'I llr,ll',

for eoery fi,nile tamily {nr}o oI d,isjoint elements oI E, \ bei,ng a positinse
conetant nhi,ch depand,s onl,y of E.

Proof. The necessity. From Orlicz's result cited above it follows
that :

lt[I'(P)] : tr(Lo(..D.

On the other hand for every finite family of positive elements of. Lo(p)

we have ,! Irru* * I(,!r,)'un,
which implies (Lo.a).

The necessity of (L'.b) is obvious.
The sufficiency will be proved. in three steps.
A. First observe that E is order o-complete. In fact let us consider

an increasing sequence frneU, nr:0 and no4 u for some neE. Th.en
{nn*r- oo}" is a weakly summable sequence antl therefore (see (Ln. o)l
it belongs to tt(E), which implies that {r"}o is a convergent sequence.
Therefore .U is ord.er o-complete antl its topology is order continuous.

B. Lot us suppose t}l:at E has a Freudenthal unit z > 0 i.e.

n eE, inf (lol, u) :0 imPlies n : 0.

Denoteby g(E) the set of allaeZ such that inf(e, u * el:0 and
by 9(E) the set of all elements of the form :

n: \ %ais

where ao €lR, eneB(E), inf (en, e;):0 f.ot i, * j, F an arbitrary finite
set. In the next we shall consider only such representations for the elements
of. e(E).

Denote by ll ll the original norm on -D. In the next we shall show
that E can be renormed by

lll r lll : y sup (,E"'3 lleill')rt,,

where the sup is taken over all the elementl z : E *,ro e 9(E),
leF

4 - c. 1628



fn fact, if the contrary is true then there exists a sequenoe &neE
sueh that llr"ll :1 and lllo"lll 22'T. This implies the existence of a
sequence so e 9(E) with the following properties :

Dlrl
8. : ! caoe,o

i-l

0(8a<lo'l

'il *f,, leoollg 2 ZnD.

rhen Jor I eE*, f* > o*;;""":
o U(nlx o 1

,E E ;:f(e';t < X frft lo' l) < ll/ll'

i.e. the sequence 
l#t"\,,^is 

weakly summable. on the other hanrt:

"i1t(f;J 
rr""rr'- @'

which contradicts (L,.aland thus (3) follows. Particularly lll lll is finite.
Then from (1) it follows that:

colilET.AiMrN Nlcfltil.slcu

such that 0(a< lol.We have:
(1) u efr, a * 0 implies lll calll : lal. lllolll,
(2) u, g eE, inf ( lal, lgl) : 0 implies lllolll' + lllylll'< lllo * glll'.
Moreover there exists 'c 

>' 0 such that :

(3) lll lll < cll ll.

(4) lll"olll : lal. lllolll,

for every a e lR, n e E, 'We have also :

(5) ll ll < lll lll.

In fact, tuom (Le.b) it follows that trtris inequality holos for the
elemeuts ot '9(D). itet, deu and. e >'0. It was remarked by Ffeutlon-
thal in [6] that there exists an I eE such that:

.l

0(o-g(etor

i

ti
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where s: f uoe, uo2 O, eoeE(E), inf (e^ren):0 for m f n, the
te=l

series being orf er convergent. since the t-opology_of -D is ord.er continuous,
tbis series is also ll ll-oonvergent. Then ttom (ir.oy it follows that:

ll - Il ll lt ilx il
lloll< ll*- E,*',li * ll,:"[. ,""'"ll* ]l,E*uil 

*

< ttr -'il +ll"i,""ii* lrtdlt< elul*Lltoilt* 
il":$.,",,*i|,

antl (5) follows.
tr'inally we shall proye that:

(6) n, E eD implies lllo + 9lll, < lllolli, + lllylll'.

-Then from (2) - (6) it follows immediately that J? is isomorphie to
an abstract, Le-spaee.

In order to prove (6) let us consid.er tu\eeA{D), e * 0 suoh that:

e 4lal + lsl.

since z is a o-complete lattice with unit for each z > 0 thore exists
eeE(E), c + 0 and a)0 sueh that z2 ae. Then for 0 { e ( 1 fixett
there exist e' e E(D), 0 < c' ( e and two positive numbers u,, and. p ,
such that:

u", c' < lnl,

gr, e' 4lul,

3nd 1,,-* 9,, 2 L- . e. I-iet us denote by €,thaset of all suoh €'. By using
Zorn's lemma and (Lo,a) we can consider a maximal subset ff of-d sucfi
that :

a', a" eQ, e' * e" implies inf (e', c".l :0.

Then for I e E*, "f* > 0 we have :

f(l,u",e'1< "f(lrl)ct EX

t(1,9,,e'l < /(lyl),
crel
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for every I C$a finite subset. From (L'.a) it follows that u",r 9",:0
except at most countable subset of G. Thus we can consider the following
element of E:

(7) z: U (u",*9".1e':sup {(a,, + 9,,)e' ; e'eG\.
"'eGr

fhe maximality of ff implies that:

(8) z2(7,-e)e.

In fact, let us Buppose that the contrary is true. Since cr", + P",>
> L - e for each e' eG it follows that:

"f 
: sup {o'; e' eQ\ }. e.

Or /e E(E) and, in attdition

e - inf(e, f7 eA@)

e-inf(e,fl+O ,

inf {[e - inf(o,/)],"f] : 0

which oontradicts the maximality of ff. Then (6) follows from (8) ancl
the following two inequalities:

},u",e'< lol

29"'e'< lYl-

C. Irct us consider the genenal case. Denote by {a;}ier a maximal
system of elements of -E wLieh s&ti8fy inf (e,, er) : Ofor i, * i. It is
known that

lol: suP {[cl (lal) ; ie I],

for each neE. Eere [er] denotes the proiector generated by er.

Then:

te,l ( lol) - sup {inf ( lol' ner); n e IN}'

for each n eE.
tr'or eaoh i e f consitler the following subspace of E z

Er: {nel?; inf (lnl,lzl\:0 if inf (lal, e,) :0}

l

-rl
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is a o-complete Banach lattlbe with unit ed. Iret,lll lll^ be the norm defin-
ed as above on Eo. We shall show that- E can bd renormed by :

(e)

(10)

lll r lll : ( Illlteol ( lrl)lllf)'i,.
der

First observe that :

Ill lllu < cll ll,

for some c ) 0. In fact, if the contrary is true, then for every n e IN there
!\ist i(1t') elN antl nneEil*1 such that llg"li - 1 and iil;"illi"; )2"\.
Then there exists also a sequence s*eg(Eti*,t) such that:

r(nl
o ( s" : 2 n*otoo < lorl

lr -l

- e1,^e{J}(8a1"), inf (eun, atn\ : A f.ot i, * j

t(nl

E "f, ile^*llo > 2"P.

fhen the sequence 
{#**"r*"1*,*.t* 

weakly summabte. rn fact

foreacJn Ie0n, I>O wehave:

o r(3)1 @ 1

,!- E * e*n I@*o) * ,!:,; 
( lo' l) < ll/ll'

On the other hand :

@ t(ft) 1

p,-E- z* "l'"lle*"llo: 6r

which contradicts (L'.a\ antL (10) follows.
The series appearing in (9) is convergent (i.e. lll lll is reatly a norm).

tr'or this, remark that from (L'. a) it follows the convergence of the series

I llteol(lol)lli
ieE

whenever -E at most countable subset of -f.
Denote by 9(E) the linepr hull of the set :

6(E) : l) 6(Er).
icr

Then Je(,U) is ll ll-dense in E.
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Thonorms ll ll antt lll lll are equivalent on?(El. It is clear that
ll ll < lll lll. Moreover there exists k >A such that:

lli lil < rc11 11'

In fact, if the contrary is true, there exists a sequence o,eg(El
such that:

llo"ll : 1'

lil a,ill > 2",

lool: pr"terl(lrn,l),

where /" is a finite subset. We have also :

E lll[eo](lr.l)lll,o ] Zoe.
i €fo

Then the sequence 
{# tr,, (lo,D}'.,t* **unlysummablebutnotp-abso-

lutely summablo, which contradicts' (Le.a\, q.e.d.
3.2. Conolannv. Ior fr a Banach la"tti,ce the Jol,lowing statements are

aqu,i,aalent:

(a) E i,s isomorph'ic to an AL-space.
(b) {a,}* e|rlEl, no 2 O implies {r"}" e t{E}.
(c) {o,}" e tL(E), no ) O implies {o*}"et{E}.
(d) {o"}" e llofBl, rn } 0 implies {o.}, e F{.8}.
(e) Eoery E-oalueil, o-aililitioe po*itioe ,rvfiare ilefineil, om a, 6-a,lgebra

is of finite oariatian'.
(t) Iar eoery M-sprcc Z we haoe :

Ie2.(ZrE), I >O implia I:absolutely'summi'ng

, (g),dt,(t) toilh I : moiafizcil-
(h) /.s (I) Quith T : integratr.

fhe proof of (a) + (d) is ;inilff with the proof of Theorem 3.1 above
and we omit it. Every M-spa*,e is also an aM-space and. thus (a) =t (f).
From l25l2.3.4 it follows easily that (f) - (g). Clearly (h) - (g). It was
remarked by Singer [31] that eyery majorized operator clefinetl. on a space
C(B) is also integral. The bidual of an -trf-spa'ce is a spaoe C(B) and eYory
majorizetl operator is weakly compact. Then (g) - (h).

For every Banach Lattice -E there exists an order isomorphism:

:-,i

y: ElEl-> 2{co, E)
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definett by: ' .

x({o,}X{a,,}1 : f a,a,.
a-1

A"--oqery{gt IeA(co, Z) is absolutely summing if and.onlyif X-L(T)eeE{E}. Then (f) * (b).
Clearly (f) .+ (e).

- _(9) =. (c).. .Remark that evgrX {an},eh(E), no 7 0 generates a
o-add,itive positive measure ,m 2 Q$Nr- JE clefined by :

m(A) : I ro,

whenover /clN. ner

(c) ? (f ) follows from [25] 2.L.2 and. thefollowing remark. For every
-ilf-space Z we have:

{a"},e lt(Z) implies {lo.l} elL(Z),
q.e.d.

3.3. Remark. For I:p ( oo the condition (Lr.a) is only neces-
sary. rn fact every p-absolutoly summing operator is also q-absolutely
summing for every q> p,

The fact that (Le. a) suffices for 7t : 1 implies that there exists no
Banach lattices which verify (Lr.a) for some 0 < p < 1.

3.4. Remark. The condition (Lo.b) holds in every Jf-space.
3.5. Remark. G_enerally ItlE) n l:{E} is not contained in ll(-E) if

\ S p 1co..A_sim_ple counter-example can be obtained for E :'co &s
f_ollows. fr.*! {*,}r=12, !t_-:2, !o} 0 and Ecr,n: o. Consider a ttisj|int
decomposition {-U'"}, of IN such that:

.F', : {1, Z, ....,, nt\

i: .: .{n' 
+ 

,'' 
' ' '' *')'

and. :

fo_r eve_ry ? -E 
Nl Denote by e^the z-th coord.inate wise sequence in co.

Then the following sequenoe of elements of oo:

fil : d'l e^

It deE,, belongs to lllcol fl dr{co}. Olearly {rn}ne ll(co), q.e.al.
3.6, Ramarlt. Let E be a Banach lattico order complemented in some

-tl-spaco Z i,e. tbws exist two oontinuous positive opaiators P eJlZ, El

1< X q< E drt
iCFn i:l
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anal 0 e-e.(nr'Z\ sucb that PQn: nfar eacr' neE. Then -E is algebrai-
cally topologically lattice isomorphic to an -tl-space. For the proof see
3.2 (t) above.

A stronger version of this result is the following minimality principle
for -tl-spaco:

Let E be a Banach lattic€ suoh that there exists an algebraic topolo-
gical isomorphism ? from -E into suitable .tt(fr). Suppose that ? > 0.
fhen from 3.2(f) abovo it follows that E is order isomorphic to suitable
Z1-space.

A more precise result holds ftrr Hilbert spaces :

3.7. Bemark (Latti,ce inoar'iance of Hilbert spa'ces). Let E be a Hi,lbert
space wki,ch 'is also a Banaah l,atti'cd. Then E i's al,gebrai'cal'ly togtologi,cnlly
lattice isomorphi,c to a sui'table Lz-spane

Proof. By using a standard argument we may assume that -D has
a Freudonthal unit i.e. E is a separable Hilbert space. fhen our corollary
follows from Theorem 3.1 above:

a) -E verifies (-t2.a). In faet, -E being reflexive,we havg t:(E\ : l'LEl.
Orlicz's result citecl in Introduction shows that f(-E)Ct'{E\.

b) -E verifies (-t2.0). In a Hilbert space all the unconditional bases
are equivalent (e.g. see [18]) and therefore for every sqch a basis {e,} there
exists a positive constant y such that :

(*)
ll.t",,"li'" tE tq*t, ne*u,,

llo ll2 @

ll I or,,rr," i,l, >2" ! lcr,,lE
ll i:r ii i:l

,:6,t:f ' n --E;,i ltttmlll,. *1,

for every {no}".12. We can chooso a common T -0 antl this fa_ct clearly
implies (L,.b). Indeed, if the contrary is true for every 7, e IN we can
find a sequence {*0,,}o.Zz and. an unconditional basis {er,o}; such that:

ller," ll'.

Then {er, "}r,, 
is an unconditional basis in the Hilbert space :

for which no relation of the form (+) holds, Q.e,d.

l. oM Altll) iW-sPAcEs

Let us recall that by an a[-space we mearr a Banach lattice -E

which verifies the following cond'ition:

{n*}^ ell[-E] implies { lr, l}, e LllEl.(aM)

s This means that E is algebraically topologically isomorphic to a Banach lattice.
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Every -trf-space is also an dlf-space. In fact -bY using a result due
to Kakutani [].31 it suffices'to consider onlS'the case E: C(B). Then
our assertion follows immediately by using the Dirac measures.

In connection with the condition (Le.a) above we wish to point out
that a similar condition holds for the -il4-spaces. 

'We need a d.efinition. A
sequence {r,}" of elements of .-E is called p-weakly summable if

i(r,, n*)1, ( @r
r-l

for every u* eE*. Denote by telU) the vector space of all such sequences.
4.1. PnoposrrroN. Let E be an aM-space. Then for I < p < @ wo

haae

{an\oele[-D] implies { lrn l}"e lelUl.

Proof. T-'et {u,}oele[E] and ge'R such that

for every {nn}nelq we have {nn*,},eLLlEf. From (

{ lo,l. lr^l),e f [.E] and therefore {n^\*. P[.8] q.e.d.

1+-1

p
aM

- 1. Then
q

) it follows that

An interesting but unsolved. problem is the following :

4.2. Pnostnu. Neeil, eaerE aM-spaco be i,somorphic to an M-spaceo!

This problem can be translated in language of ,operators as it fol-
lows: L'etZ be a Banach lattice such that every Z1(p,)-valuetl positive
operator defined on Z is absolutely summing. Need every positive 

-oPera-
tor of 2(2, Lt(p.))be integral? This is an easy consequence of thefollow-
ing two propositions :

4.3. PnoposruoN. Ior E a Banach lattice the lollowing statements
are equioalent z

(al E i,s ord,er isomorphic to an M-space
(b) Ior eaerg posi,titse Railon n'ieasure p. we hatse:

T eA(B,trt(p))r T > 0 implies T : i'ntegral'

(c) TeA(E,lt), T20 impli,es I:nwclear.
Proof. (a) = (b). Let T e 2(8, Zt(p)), T 2 0. The conjugate of _E

is order isomorphic to a space "t1(v) and thus ?* e -Q.(L*(p.), Zt( u)) is absolu-
tely summing. On the other hand it was remarked by Singer [3llthat
every majoriZetl operator defined on a space C(B) is also integral. Parti-
cularly ?* is intogral, etc.

(b) = (c). Since f is a separable d.ual every integral operator T e 2(8,
11) is also nuclear. See [8] $4? q:3' C-orollaire 3.' (c) + (a). tr'or every {nI}".lLlE:1, ntr >-0, we can consider the
following positive operator T e 2(8, lr) given by :

T(n): {(o, nt)}.
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I*.o* hypothesis, ? is nuclear and thprefore integral. An -t1(g,)-valued
integral operator maps normed bounded subsets int-o ortter noundea suu-
sets.See [8] Theorem 11 for details. Therefore {*I\,eE{n*1 and thus
(seo T_h-eorem 3.1) Z* is order isomorphic to an -ttlspa;e, .i.*.ii.

The next result gives a simple cbaraeterizatibn fbr- a-&r-spaces by
using the absolutely summing opeiators:

4.4. PnoposrrroN. a Banach lattice E is ord,er isomorphic to an aM-
sgaag i,f, and, onl,.y o!, coory Lt(p.)-oal,ueil padtioe operatw d,efi,ned, on E is
absolutely summing.

Proof._The, necessity is clear. The sufficiency. x'irst remark that
every n* eU*s u+ >0 defines naturally a relation of equivalency:

, n * g if., and only ff, o*fln _ y l) :0.
The completion of Z/- with respect to tho norm:

lloll.* : n*(lnl)

is an -t-space denoted. by Lr(u*). x'rom hypothesis it follows that the
g.angn:cqt mappilgs E --> Lt(n*) are all absolutely summing which implies
that, E is an a-04-space, q.e.d.

4.5. Ramark. Let E be a Banach lattice ord.er complemented in some
Jl[ (respeotively aMl-space. Then -E is order isomorphio to an M-(aM-\
space. Mo-re gener,ally let 0 be a Banach lattice and. Z an M- (ot an aM-\
space such that there exist two continuous operators Pe-Q,(Z, E), ee,e2(8, Z) sachtb:at P )0 and PQn: rfor every ueU. Then'A is
ord.er isomorphic to an XI-(aII-) space.

Finally we state three useful remarks about the a_df-spaces.
4.6. Remar&. The dual of an aM-space -E is a Banach tattice having

order continuous topology. This follows from 2.3 above. rn fact every
tnllt. t^lU*1, -nf ) 0, defines an absolutely summing operator I e J1E, tf)
by the formula:

T(xl : {(a, nl)),.

Every absolutely iltmming ope,rator is weakly 66mpact ( [8] $ 4, no 6 Lrem-
m9 17) and thus-the restriction of. I+ to co is also weakly compact. Clearly
this restriction is given by:

E+({a,}l:
@

\ o,'l'
r:1

From Orlicz's result citetl. in section 2 above it follows that, {rf\ e
e lt(E*1 q.e.d.

4.7. Remarlr. An aM-space -E cannot be order isomorphic to a space
l?. Hereweconsid.ergnlythecase2 <p < o. Forl<tgZ see [fr1.
Suppos_e th?t, E satisfies to (gM). _Since the canonical mapping in: F--->io
is absolutely summing (1251 2.4.2) it follows that:

T e 2(lD, Lt), I ) 0 implies T",ir: nuclear.



fn fact, the protluot of two absolutely summing operators is a nu-
clear. See [S] Theorem 14 for the proof.

On the other land (see [25] 3.1.10) an operator T e J(tt, lL) given
by a, matrix {ar}r,t is nuclear if, and only if :

,i::ni ai,t I a,

, Consider a sequence {aJoef, ao}0, and. Xo,: 6. It d.efines a
positive operator I e.Q.Ue, A) as follows:

I({**}*\ : {aoao},.

Clearly the product T"ie is not a nuclear operator, q.e.at.
This answers to a qrrestion posed by Jameson [11].
Ths fact that-.an -M-space,cannot be isomorphic to a space Zo(p,)

(1 < p ( co) was first romarked by Grothendiock [?].
4.8. Remark. The socond dual of an aM-space is also an aM-spaco.

In faot, lot us considor an operator I e-Q,(E**,If(p)), f > 0. The restric-
tion of T bo E is a positivo operator B e2(8, It(fr)). Then B is absolu-
lely-summing and. therefore ([8] ch. 1, Lomma'1?) weakly compact, which
implios thab T : $*'r. It romains to observe that thd biacljoint of an
absolutoly summing oporator is also absolutoly summing -([8] ch. 1,
Lomme 17, Corollairy; io the torminglogy of Grothentlieck absolutely
summing : somi-intdgrale fuoite) q.e.d.

I

5. APPLICATION TO THE ITUCLEAR tpCTOn LATTICES

We first presont a brief survey of tho main propertios of tho p-abso-
lutely summing operators. See Pietsch [26] for details.

Let Er -F bo two Banach spaces and 1 < ? < co.
5.1. DnrrxrrroN. An operator ? e 2(8, I) is said. to be p-absolu-

tely summing if it verifies the following equivalent conditions:

STII/EIVIAJBilT/TTY I.N BA,NACII L.ATTIC;ES 1125

(-o.1) r$'plnh c PtrI

(nn.Z) Thore oxists a positivb Baclon measure g, on the unit ball B* of -E*
suah that :

llrril < \,, *, o* ) | ctp. (o*)

for evory n eE. Instead of Bt wo can consider hore any weak*-closed.
subsot "KCB* such that lloli : sup l( n, a*) | for every nefr.

There exists a eonstant 69'o such that for arbitiary ott nz t . ..t
E;

(tu:3)
o, ln
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'iIr*,ll'q c sup.{i,ar,, r*>t,}.

Denoto by \olDr -E) the voctor space of all p-absolutely summing
operators T e -Q.(8,- I).

5.2. Pnoposrrro:q a. It E 'is a Banach space and T e J(8, L(p\l
nxlps_the uni't ball' .of E into an order bounil,ed, subset oI Lr(vl thei T eIJp
(8, P)(L <p < oo).

Proof. FolE:1 this result was obtainod by Grothendieck [8] ch.1,
Thoorome 11. The goneral case involves only slight modifications by
qsing the lifting theorom in [10] instead of the Dunfortl-Pottis lifting
thoorem i.e. for every positive Radon measure p. dofined on a locally coml
p-act llausdorff space B there exists a function a : rS -> (-t-(p)f such
that :

(i) fla(s)lf :1, r€re.

(ii) The function s + (f cr(s) ) is p,-measurable and p,-equal
with /, whonever f e L*(p).

Finallyromarkthatfor EanaM-space,p:1and T > O our&sser-
tion follows immediately from the conditions allf and, (Le, o) above.

5.3. Remark. Let l? be an aM-spaae and 1 < p < m. ihsn

T e.Q.(E, Lo(u\), T-> O implies T elln(E, Lo(r)),

and thus we can reformulato Theorem 3.1 above as follows:
A Banach lattico -E is order isomorphic to an abstract -te-space if,

and only if, it verifies the following two cond.itions :
(Lo.a') tr'or every oJf-space Z well.avo:

Te2.(Z,E), I )0implies Tenr!,E)

for every finite family {o,}, of disjoint elemonts of E.
We shall proyo only that (L,.a') + (Le.a). In fact, let us consid.er a

qequenco {o*},eFlDl, an2 O. ft generatorl a positive oporator T eA(co,
J?) given by:

(L',.b) llXc,ll' ( y) llnullo,

T({""\) : d'nfin,

tr'rom hypothesis it follows that T is p-absolutely summing which implies
that {n*}*ele{E}. On the other hand it was romarked. by Pietseh [26]
Satz L7, that every p-absolutely summing oporator is wm,kly compact,
which implies (seo tho proof of 4.6 above) that {r"}, eE(E), q.e.al.

Ths next result was obtainocl by Pietsch [26] Thmrem 4 (see also t8l
ch. 1, Th6ordme 14 for p : L):

{ See also Kvapien S., On a theorem of L. Schwartz and its applications to absolutely
summing operators, Studia Math., 38 (1970), 193-201.

6I
n:7

I
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l
l
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5.4. Tnnonnv. Let 1(Pr Q1@rE, I, G Banach lp,acey, Tefl,
(E,E) anil, Bello(-8, G). Thenz

e 4 !:1+ t 
" 

1r B.? e It,(E, G),rpq.

U rf !: ! + t , tt $'? e rlr(8, G).rpq

In other word.s the product, of. 2p p-absolutoiy summing operators
is a nuclear operator.

5.5. Normeil spaces whi,ch may be associated, canonically to a locally
cunne& spaae E.

Ltet 7t be a continuous somi norm on E. Donoto :

Xn : {n eE; P@) : 0}.

Then -E/-l[r: E, is a normed space with respoct'.to p. Givon two con-
tinuous' seini noims p and e, g 4 4, thoro is clofined a canonical map-
ping -Eo+-En which-is continuous. We can extend' this mapping to a

mapping from -8, to Eo. Hero the cap denotos -tho completion." F;r I/ an a"bsolufely convox c1oso6. noighbourhood of 0 tlenote by
Po the semi norm associatod. antL by Eo t}l.e normod. spaco Epo.

For every absolutely conYex bounded subsot A CE densto by En
tho vector spa-ce gonerated by A and' end'owetl with the norm :

llnlle: inf {r>o; ne},A\'

There oxists a natural duality botwoen the spaces Eo and' En.

5.6. DnnrxrTroN. A locally convex voctor lattico l9 is sairl to be
locally (respectively locally*) an .tl-space if thore exists a fundamental
systeir iZ it absotutely convex closed. Solid neighbourhoods of 0 (bountlect

subsets of. E) such that the Banach lattices Eo Ae of be all -tl-spaces.
Similar notions are introduced for M-and' -t?-spaces.
Animportant class of locally convexvector lattices which are loca,lly

M-spaces and -t,-spacos (1 < p < co) is the class of all nuclear lattices.
Thii folows easilyby using the techniques in [25] ospecially 6.1.2 and 6.1.3.

Recall that a locally conv.ox vector spaco -E is saicl to be nuelear
(nuclear+) if for overy continuous somi-norm p (for. eYery absolutely con-
vex bound.od subsot- ACE) there exists a continuous semi norm q'
p < q (an absolutely bounded subsot PCE,ACB). such that the cano-

nical mapping Eo-*Eo lrespoctively Ez,+ -8") be absolutely-summing.
For a Aet-aUed acLount-of ths nuclear vector spaces see [8] and [25].

The following result holds:
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5.?. Tmnns;u. Let E be a locally conoen oector Latti,ce. Then D is a
nuc\ear (nuel,ear*) oecl,or latti,ca if, anil onty i,t, i,t sati,$ies the foltowi,ng
canili,ti,ons z

(Xr) E i,s local,Iy (locallg*) an M-space,
(.l[r) E i,s local,ly (l,ocallg*) an Lp-spacc tor somc 1 ( p < oo.
Proof, rt sufficos to prove only the sufficiency. or this follows

from 5.3 ancl 5.4 above.
For p : 1 this result was earlier establishodd by popa [2?].

APPENDIX CONCERNING TIIE ONDER ON EANACE SPACES

The aim of this section is to prove the existenco of a Banaeh space
which does not admit any structure of Banach lattice. A rosult of Hogbe
r{lend [9] asserts that every Banach Bpace is the strong dual of a Jui-
table nuclear spaco and thus the result above and the Komura - Koshi's
characterization for nuclear lattices in [15] imply together that there oxist
nuclear spaces which are not isomorphic to a space of generalized. se-
q]reloes. Hoyeyer the basis problem in the tr'rechet nuclea,r spacos (i.e.
Need every tr\€c-het nuclea,r space be isomorphic to a space of sequen-
ces?) remains still open.

That the order problem hd,s a negative answer for the locally con-
v-ex vecto: sBacgs was earlier romarkod. by Schaeffer who proved [2g]
that a roflexive lattice is necessarily topological complete. SC [1 ] for an
example of non-complete Montel space.

Our basic tool is the, study of Banaeh lattices whose topological
dual is 11. We need a usoful property of 4 namely:

Loulru, I.5 The, Bana,ch space lr ail,mi,ts a unique (upt to an alge-
brai'c toTtologtc latti'oe i,somorphi,sm) strwcture of ord,er complete Banach l,attibe.

Proot. In fact let us consider 11 endowod with a structuro of com-
plete Banach lattice. since 4 is a separablo dual it follows from 2.4 above
that its topology is order continuous and therefore oach order iuterval
in F must be relatively weakly compact (2.3 above). On the other hand
overy relativoly weakly compact subset of [1 is rolativoly compact. trrom
[33] Theorem 1 it follows that the order considered on 4 is discrote
i.e. it is the coordinatowise order associated to a suitablo unconditional
basis of 11. Or it was remanted in [1S] Theorem 1 that 11 has (up to oqui-
valence) a unique unconditional normalized basis.

Becall that a basis {o"}" is called normalized 1l lln,ll : 1 for every
?c € IN. Two bases {a"}" and {y*\^ of a Banach space -X are saiat to b-€
equivalent if there exists an invertible linear operator T e 2(X, Y) such
that Inn - go fot every r, € lN.

tr'rom I-,omma 1 abovo wo deduce the following:
5 Added in proof, September 15, 1974. Afte. this paper has been sent to the printer

we found tl is property stated without proof in Classical Banach Space$ (Lectures- notes
in Math., Springer-Verlag no 338, 1973) by Lindenstrauss J. and Ttfriri L.
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Lnuul 2. Let x be a Banaah latti,ce whose toptotogi,cat itual is r.
Then x is isometri,c-to a subspace oJ a space c(K\ eonii*tiig o! "il in, f"rn-tiom t.C(:) satistying a sei dt of retmi,ons oj tne lorm:

l&il: u&il,
wh,ere tci,^k!e^!, lo e lR, c e o. rn other word,s x i,e a G-sTtace in the termi,-
nology o/ [16].

lfyyl. tr'rom r:emma 1 it follons that there exists an algebraic topo-
logic lattice.isomorphirp- ? : lr --> -X*. Denote by i" : X --> -X** the oaio-nicgl mapping._Then X*+ - l- as Banach spa-ces-and Z : 9*"4tfli,a Banach sub-lattice of l-. A classical result due to ra*utafi- tiglimplies t'hg"t Z consists precisoly from all the continuous functionsla.itin:€d on the Stone-Cech compaetification of IN and satisfying d s"t bof relations of the form

g* " i."(n)(kl) : trog* . ix@)Q*l

for every nF 4. on the other hand g is an algebraieal isomorphism and
our result follows.

we can establish easily the existence of Banach spaoes which do
not.admit any structure of Banach Lattice. rn fact, it wi,s remarked by
I.dnlflenstrauss _[16] that there exist Banach spaces whose topological duai
is I and which are not G-space e.g. the sp-ace (with the iup"norml oi
all eonvergent real Bequences {o"}" such that lim *n - 

*, * frr.
2

Receioed October Ia, lgla Institutc of Mathemalles
Calca Grivilcl ZI

Bucharcsf
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