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SUMMABILITY IN BANACH LATTICES

BY

CONSTANTIN NICULESCU

The M- and L-spaces are characterized by their properties of summability. An
example of Banach space which cannot be realised as a Banach lattice is present-
ed also.

1. INTRODUCTION

In [5] Dvoretzky and Rogers remarked that a Banach space Z which
verifies the condition [}[Z] = [}{Z} (we use the Pietsch’s notations in [25])
is isomorphic to a space of finite dimension. A more precise result was
obtained by Grothendieck [8]: a locally convex Fréchet vector space X
is nuclear if and only if /[X] = [{X}. In the present paper we split
Grothendieck’s condition of summability by giving suitable conditions
for the spaces L?(p) (wa positive Radon measure and 1 < p < o) and
C(S). Our results are motivated by the local structure of nuclear lattices.
See section 5 below for details.

Before stating explicitely these results we shall define the terms
appearing.

By a Banach lattice we shall mean a Banach space which is also a
vector lattice and in addition :

l¢| < lyl, implies [z| < [yl

An example of Banach space which cannot be realised as Banach
lattice will be presented in the Appendix.

‘We shall denote by (?{X} (X a Banach space and 1 < p < ) the
vector space of all sequences {,} of elements of X such that :

Zlla,|” < o0

For all the problems concerning the summability or nuclearity
we refer to [8] and [25].

Other notations :
L(E,F) = the vector space of all continuous linear operators from F
to F. Here E and F are two locally convex Hausdorff spaces
E* = L(E, R)
0(8) = the Banach lattice (with the sup norm) of all continuous real
functions defined on the compact Hausdorff space S.
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1112 CONSTANTIN NICULESCU 2

1
L?(u) = the completion (With respect to the norm ||f|, = (S| fl?dp )5)

of the space of all continuous real functions f: § — R having
a compact support. Here p denotes a positive Radon mea-
sure defined on the locally compact Hausdorff space S

* = '{R}, 1<p< o,

We can now present a brief survey of the main results obtained.

THEOREM. A Banach lattice Z is algebraically topologically lattice
isomorphic to a space L*(p) if and only if it satisfies the following statements :

(L. a) {2}, €[Z], @, > 0 implies {,}, e "{Z}NI(Z)
(L*. b) I Zall” < yZfla|?

for every finite family {x;}, of disjoint elements of Z, v being a positive
constant which depends only on Z

As a consequence of this result we shall prove (Remark 3.7 below)
the lattice invariance principle for Hilbert spaces.

The question of summability of certain kinds of sequences in a
space L?(u) has been considered before by various authors. Here we men-
tion only Orlicz’s result in [24]: If {«,}, is a summable sequence in

L*(y) then ¥ |l#,[™ < oo where y(p) =2 if 1 <p <2 and y(p) =

n=1
if p > 2. The exponents y(p) are the best possible i.e. they cannot be
replaced by smaller constants.

Another class of Banach lattices which admit a characterization by
summability is the class of all order s-complete Banach lattices having
an order continuous topology. In the next section we shall prove the
following result :

THEOREM. For an E ordered Banach space which is also a o-com-
plete vector lattice the following statements are equivalent :

(i) @, 40 (in order) implies x, — 0 topologically.

(ii) Every order interval in E is relatively weakly compact.

(iii) {ac helG[E]l =z, > 0 implies {z,}, € {(E).

Here a[E] denotes the vector space of all {w,}, e }[E] such that

for a suitable x € H, « >0, we have:

Y 2.l < @

neF

whenever F CIN a finite subset.

Concerning the M-spaces i.e. the closed vector sublattlces of a
space C(8) it was conjectured ! that they are characterized (up to an alge-
braic topologic lattice isomorphism) by the following condition

(aM) {@,}, € }[E] implies {|,|},€L[E].

1 See [11]
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One can show (see section 4 below) that this problem is equiva-
lent to the following : Let E be a Banach lattice. Suppose that every posi-
tive operator T e £(FE, I') is absolutely summing. Need every positive
operator T € £(E, I*) be nuclear?

An aM-space i.e. a Banach lattice which verifies the condition (a.M)
above, cannot be isomorphic to a space {* (1 < p < ). The conjugate of
an aM-space is a Banach lattice with an order continuous topology. See
gection 4 below for details.

The author thanks Dr. Popa Nicolae for many valuable sugges-
tions.

2. BANACH LATTICES HAVING AN ORDER CONTINUOUS TOPOLOGY

A Banach lattice E is said to have an order continuous topology if :
z, ;0 (in order) implies x, — O topologically.

The usual examples are the space L"(y.) (1 <p< ) and ¢, the
Banach lattice of all null sequences of real numbers. A characterization
for all the o- complete Banach lattices having an order continuous toplogy
was obtained in [21]. In the next we obtain this characterization by using
the order continuous operators :

2.1. ProprosiTiON. Let X, Z be two ordered Banach spaces, Z being
supposed in addition a o-complete vector lattice. Then for U € £(Z, X) U > 0,
the following statements are equivalent :

(a) U maps the order intervals of Z into relatively weakly compact
subsets of X.

(b) If {2,}, is a decreasing sequence of positive elements of Z then
Uz,}, i8 a convergent sequence.

Proof. For z€Z, z > 0, consider the following vector space :
= {yeZ; |y| < » for suitable » > 0},
normed by :
lyll. =inf {A >0; |y| < 22}

Then Z, is an abstract M-space in the terminology of Kakutani [13],
and therefore it is isometric and lattice isomorphic to a space C(8,) for
8, a suitable compact Hausdorff space. Denote by U, the following product
of operators :

z,%z25% x.

Here ¢, denotes the canonical embedding.
The assertion (a) above is equivalent to the following :
(a’) The operators U,, z > 0, are all weakly compact.

Then the equivalency (a’) < (b) follows immediately from an earlier
result due to Grothendieck [7] Theorem 6.
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For a = b we present a direct proof. Let {z,}, be a decreasing sequen-
ce of positive elements of Z. Since U > 0 it follows that {Uz,}, is a weakly
Cauchy sequence in Z. On the other hand (a) implies that {Uz,}, is contain-
ed in a weakly compact subset of Z. Therefore { Uz,}, is a weakly conver-
gent sequence of positive elements of Z. It is also a decreasing sequence
and thus the generalized Dini’s theorem (see [29] ch. V, 4.3) implies that

this sequence is also convergent, q.e.d.
2.2. COROLLARY. Let Z be an ordered Banach space which is also a

c-complete vector lattice. The following statements are equivalent :

(1) Bvery order interval of Z is relatively weakly compact.

(2) The topology of Z is order continuous.

2.3. Remark. The conditions (1) and (2) above are equivalent to the
following :

(3) {@,}n € (.[Z], &, > 0 implies {x,}, €l{(Z)

In fact Orlicz’s result in [23 ] concerning the unconditionally weakly
convergent series 2 shows that (1) = (3). On the other hand (3) = (2),
since if we consider a sequence z,€Z, z, > 0 and x,} 0 (in order), then
the series (2, — @,) + (4, — @3) + ... defines an element cf (;[Z],

q.e.d.

2.4. Remark. Let Z be an order s-complete Banach lattice which is
also a separable dual. Then Z has order continuous topology. In fact, it
was remarked in [7] that every T e L (0(8), Z) is a weakly compact opera-
tor whenever § is a compact Hausdorff space. By considering the spaces
Z, as above it follows that every order interval in Z is relatively weakly

compact q.e.d.

3. CHARACTERIZATION OF L?(y) BY SUMMABILITY

A Banach lattice E is said to be an abstract L*-space (1 < p < o) if
the topology and the order are related by :

v,y€E inf (|o|, ly|) =0 implies [z 4 y[” = llz[°+ [y "

Marti [18] and Bernau [34] have remarked that every abstract L*-
space is equivalent to a space L?(p) for u a suitable positive Radon measure.
However several special cases were proved earlier. For example the case
p = 1 was illuminated by Kakutani [12]. Bohnenblust [2] considers the
case of the separable Banach lattices order s-complete. '

Joint characterizations of L?- and M-spaces were obtained in [2],

[32], ete.

2 We recall this result : Let X be a Banach space and {z,}, a sequence of elements
of X. Suppose that for every increasing sequence n;, i € [N, of integers the series ani is weakly

convergent. Then for every increasing sequence n;, i €[N, of integersthe series Zx,,i is con-
vergent in X. i
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In the next the abstract L?-spaces are characterized by their summa-
bility properties. The case p = 1 was treated independently by Schlotter-
beck [30]:

3.1. THEOREM. A Banach lattice E is topologically algebraically lattice
1somorphic to an abstract L*-space @f, and only if, E satisfies the following
conditions :

(L*.a) {2}, €e}[E], =,>0 implies {x,},elP{E}NHE
(L”.b) | Z2” < v* 2|7,

for every finite family {x,}; of disjoint elements of E, v being a positive
constant which depends only of K.

Proof. The necessity. From Orlicz’s result cited above it follows
that :

OLLP ()] = C(LP(w))-
On the other hand for every finite family of positive elements of L”(y)

n n V4
we have ¥ Sf?dp < S(Zf,. ) dy,
i=1 i=1
which implies (L*.a).
The necessity of (L”.b) is obvious.
The sufficiency will be proved in three steps.

A. First observe that F is order s-complete. In fact let us consider
an increasing sequence ,€l, », =0 and x, < « for some x € E. Then
{@p 41 — ®,}, 18 & weakly summable sequence and therefore (see (L”. a))
it belongs to ({(E), which implies that {x,}, is a convergent sequence.
Therefore F is order s-complete and its topology is order continuous.

B. Let us suppose that E has a Freudenthal unit » >0 i.e.
x€l, inf (|x|, ) = 0 implies & = 0.

Denote by #(FE) the set of all e € E such that inf(e, v — ¢) = 0 and
by &(E) the set of all elements of the form :

w=2aie“

i€F

where o, €R, ¢, € B(E), inf (e,, ¢;) = 0 for ¢ # j, F an arbitrary finite
set. In the next we shall cons1der only such representations for the elements
of #(E).

Denote by || || the original norm on E. In the next we shall show
that F can be renormed by

llelll =y sup (Y of [l ¢])2,

tEF

where the sup is taken over all the elements = = Y a6, € #(E),
ieF

4 — c, 1628
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such that 0 < 2 < |#|. We have:

1) zeB,u # 0 implies ||asl| = |a|- ||l

2) @,y € B, inf (||, |y|) = 0 implies || z||” + IlylI°<llz + y|I>.
Moreover there exists ¢ > 0 such that:

(3) I <el I

In fact, if the contrary is true then there exists a sequence x,€E
such that ||z,]| = 1 and ||| «,||| > 2"y. This implies the existence of a
sequence s, € ¥(E) with the following properties :

D(n)

= Z %inCin
i=1

0 <8 <@l

(P)n
Y, ofulleinl? > 272,
i=1

Then for feE*, f* > 0 we have:

3 % 22 ften) < 3 A1) < W

n=1

iwWn

i.e. the sequence [%‘ﬂ’-‘ e,-,,} is weakly summable. On the other hand :
“m P
5_‘, Z lle;all” = oo,
fn=1i=1

which contradicts (L?.a) and thus (3) follows. Particularly ||| ||| is finite.
Then from (1) it follows that :

(4) Wazlll = lal- ll«ll,
for every a € R, x € E. We have also :

(6) <

In fact, from (L*.b) it follows that this inequality holds for the
elements of 9”(E) Let € E and « > 0. It was remarked by Freuden-
thal in [6] that there exists an 8 € E such that :

0< v —8< cu,
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where s = Y a6, o, >0, ¢,€B(E), inf (e, ¢,) =0 for m # n, the

n=1
series being order convergent. Since the topology of E is order continuous,
this series is also || |l-convergent. Then from (L2.b) it follows that :
o { | ) ! N I
loll < la— Sl + | B aea] + [ Foen| <
| n=1 I n=N+1 | n=1 l
! © | ! ) i
<llz—sll+| ¥ «e|+ el <ellul 4|l +i‘ Yy e,
In=N+1 | |n=N+1 i
and (5) follows.
Finally we shall prove that :
(6) 2, ye B  implies |z + y]I* <[ «|” + |yl

Then from (2) — (6) it follows immediately that E is isomorphic to
an abstract L?-space.

In order to prove (6) let us consider an ee B(E), ¢ # 0 such that :

e< |zl + 1y].
Since E is a s-complete lattice with unit for each z > 0 there exists
¢€B(E), ¢ # 0 and a>0 such that 2> xe. Then for 0 < ¢ < 1 fixed

there exist ¢’ € B(E), 0 < ¢ < e and two positive numbers «,. and 8 .
such that :

L% 8’ < Im!’
Ber ¢ < lyl,

and a,. + B,- > 1 — . Let us denote by & the set of all such ¢'. By using
Zorn’s lemma and (L”.a) we can consider a maximal subset (F of & such
that :

e, ¢’ eF, ¢ #¢' implies inf (¢, e")=0.
Then for f € E*, f* >0 we have:
(Y a.e) < f(l2])

e’ eF

(X Bee) < fllyl),

¢Sk
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for every F C (¥ a finite subset. From (L”.a) it follows that «,., B, = 0
except at most countable subset of (#. Thus we can consider the following
element of £ :

(7) = Z (ae’ +Be')6’ :sup {(ae' + Be')e, ; 8, E(;}'
e e(F

The maximality of (7 implies that :
(8) 2> (1 — ee.

In fact, let us suppose that the contrary is true. Since «, + 8, >
> 1 — ¢ for each e’ e(F it follows that :

f=swp{e; ¢eF Fe.
Or feB(E) and in addition
e — inf(e, f) € B(E)
e —inf(e,f) # 0
inf {[e — inf(e, /)], f} = 0

which contradicts the maximality of (7. Then (6) follows from (8) and
the following two inequalities :

Za, 6 < |z
de' ¢ < l?ll-
C. Let us consider the general case. Denote by {¢;}ic; a maximal

system of elements of E which satisfy inf (¢;, ¢;) = Ofors # j. It is
known that

|@| = sup {[e;] (Iz]) ; i€ I},
for each x € E. Here [¢;] denotes the proiector generated by e,.
Then :

[e:] (1)) = sup {inf (|z], ne); ne N},

for each z € E.
For each i eI consider the following subspace of E :

E, = {xeE; inf (|2|, |2]) = 0 if inf (|2, &) = 0}
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i8 a o-complete Banach lattice with unit ¢;. Let ||| lll; be the norm defin-
ed as above on E;. We shall show that E can be renormed by :
9) ol = C ¥ llile:] LIy,

iel

First observe that :

(10) ol < ell 1l

for some ¢ > 0. In fact, if the contrary is true, then for every = € [N there
exist i(n) €N and %, € Ei, such that |, =1 and ||, i > 2%y,
Then there exists also a sequence s, € &#(FEix) such that :

7{(n)
0 < sﬂ = 2 LpnCrn < lwnl
¥=1
€ra € B(Eim), Inf (e, €,) =0 for i # j

r(n)

kgl a’l"" ” elm”p > 2np.

Then the sequence -él—;ak,,ekn} .is weakly summable. In fact
k,n
for each feE* f> 0 we have:

© r(n) 1 I |
Y Y oo flew) < Y (2 ]) < lIfIl
ne1ke12 =12

On the other hand :

0  r(n) 1 0 "
,,‘glk§12”" akn”ekn” = GD,

which contradicts (L®-a) and (10) follows.
The series appearing in (9) is convergent (i.e. ||| || is really a norm).
For this, remark that from (L”-a) it follows the convergence of the series

Y. lteIClzDiP,

i€H

whenever H at most countable subset of I.
Denote by &(E) the linear hull of the set :

B(E) = | B(E,).

iel

Then <(E) is || |[-dense in E.
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The norms | || and ||| ||| are equivalent on &(E). It is clear that |
Il I <l lll. Moreover there exists k¥ > 0 such that: ;
M <&ji. ;

In fact, if the contrary is true, there exists a sequence z,€ #(E) |
such that :

) = 1, |
@ ill > 2" -
5, = 3 [e](I21),

iE€Fy

where F, is a finite subset. We have also :

Y LIz Dl > 2.

s€ly

Then the sequence { — [e,] (|@,]) ¢ is weakly summable but not p-abso-

lutely summable,- Whlch contradlcts (L” a), q.e.d.

3.2. COROLARRY. For £ a Banach laitice the following statements are
equivalent :

(a) E is isomorphic to an AL-space.
(b) {wn}ﬂ € ll[E]? wn ? 0 lmpheS {a/‘”}” € [I{E}'
) {#,},€ME), », >0 implies {x,},cM{E}.
(d) {z,}, € L[E), @, >0 implies {x,}, el{E}.
(e) Every E-valued c-additive positive measure defined on a c-algebra
18 of finite variation.
(£) For every M-space Z we have :

TekL(Z, E), T >0 implies T = absolutely summing

(g)- A8 (f) with T = majorized.

(h) As (f) with T = integral. |

The proof of (a) « (d) is similar with the proof of Theorem 3.1 above
and we omit it. Every M-space is also an aM-space and thus (a) = (f).
From [25] 2.3.4 it follows easily that (f) = (g). Clearly (h) = (g). It was
remarked by Singer [31] that every majorized operator defined on a space
C(8) is also integral. The bidual of an M-space is a space C(S) and every
majorized operator is weakly compact. Then (g) = (h).

|
For every Banach Lattice E there exists an order isomorphism i
l
1

x: OLE] — £(c, E)

J
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defined by : ' .
Xz ) = 3,

=1

An operator T € .L(c,, E) is absolutely summing if and only if ¥ Y T) e
€ {E}. Then (f) = (b).

Clearly (f) = (e).

(e) = (c¢). Remark that every {«,},el(E), x, > 0 generates a
c-additive positive measure m : P(IN) — E defined by :

m(A) = 2 Ly
neEA
whenever ACIN.
(c) => (f) follows from [25] 2.1.2 and the following remark. For every
M-space Z we have :

{w,}, €(MZ) implies {|z,|}elXZ),
g.e.d.

3.3. Remark. For 1 < p < oo the condition (L”-a) is only neces-
sary. In fact every p-absolutely summing operator is also g-absolutely
summing for every ¢ > p.

The fact that (L?-a) suffices for p = 1 implies that there exists no
Banach lattices which verify (L”-a) for some 0 < p < 1.

3.4. Remark. The condition (L?-b) holds in every M-space.

3.5. Remark. Generally ['[E] N (°{E} is not contained in [(E) if
1 <p < . A simple counter-example can be obtained for E = ¢, as
follows. Let {«,}, €?, 4, = 2, a, > 0 and Z«, = oo. Consider a disjoint
decomposition {#,}, of IN such that :

and :

for every n € IN. Denote by ¢,the n-th coordinate wise sequence in ¢,.
Then the following sequence of elements of ¢, :

.’L‘i = a,; 6”

if i e F,, belongs to {[¢,] N 12{c,}. Clearly {,}, & [c,), q.e.d.
3.6. Remark. Let F be a Banach lattice order complemented in some
L'-space Z i.e. there exist two continuous positive operators P € £(Z, E)
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and Q € £(E, Z) such that PQx = « for each v € E. Then F is algebrai-
cally topologically lattice isomorphic to an L!-space. For the proof see
3.2 (f) above.

A stronger version of this result is the following minimality principle
for L'-space:

Let E be a Banach latticé such that there exists an algebraic topolo-
gical isomorphism 7T from E into suitable L'(u). Suppose that T > 0.
Then from 3.2(f) above it follows that F is order isomorphic to suitable
L'-space. '

A more precise result holds for Hilbert spaces : ‘

3.7. Remark (Lattice invariance of Hilbert spaces). Let E be a Hilbert |
space which is also a Banach lattice®. Then E is algebraically topologically f
lattice isomorphic to a suitable L2-space. _ 3

Proof. By using a standard argument we may assume that E has fs
a Freudenthal unit i.e. ¥ is a separable Hilbert space. Then our corollary |
follows from Theorem 3.1 above:

a) F verifies (L2.a). In fact, E being reflexive we have [} E) = [ E].
Orlicz’s result cited in Introduction shows that [} E)CE{E}.

b) E verifies (L2.b). In a Hilbert space all the unconditional bases
are equivalent (e.g. see [18]) and therefore for every such a basis {¢,} there
exists a positive constant y such that :

(* (RN SR LN

for every {a,}, €[2. We can choose a common y >0 and this fact clearly |
implies (L2.b). Indeed, if the contrary is true for every n €[N we can
find a sequence {«;,}; €!> and an unconditional basis {;,}; such that :

I © 1‘12 R «©
S ntin | 22 3 Laalt llegal
t i=1

s

Then {e; ,};,, is an unconditional basis in the Hilbert space :
& E={r:N>E; 5 1 < o
i=1 n=1

for which no relation of the form (+) holds, g.e.d.

4. aM AND M-SPACES

Let us recall that by an aM-space we mean a Banach lattice E
which verifies the following condition :

(aM) {@,}, e '[E] implies {|w,|}, € [ E].

3 This means that E is algebraically topologically isomorphic to a Banach lattice.
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Every M-space is also an aM-space. In fact by using a result due
to Kakutani [13] it suffices'to consider only the case E = ((S8). Then
our assertion follows immediately by using the Dirac measures.

In connection with the condition (L”.a) above we wish to point out
that a similar condition holds for the M-spaces. We need a definition. A
sequence {z,}, of elements of F is called p-weakly summable if

Z <wm W*>|p < 0,
n=1 R

for every «* € E*. Denote by [?[E] the vector space of all such sequences.
4.1. ProPOSITION. Let E be an aM-space. Then for 1 <p << oo we
have

{@n}, € P[E] implies {|x, [}, € P[E].

Proof. Let {x,},€l’[E] and geR such that 1 -|-i = 1. Then

p q

for every {o,},€l’ we have {«,x,}, € ![E]. From (aM) it follows that
{|,|* |2, |}, € L[ E] and therefore {x,}, € (P[E] q.e.d.

An interesting but unsolved problem is the following :

4.2. PROBLEM. Need every aM-space be isomorphic to an M-space?

This problem can be translated in language of operators as it fol-
lows : Let Z be a Banach lattice such that every IL(p)-valued positive
operator defined on Z is absolutely summing. Need every positive opera-
tor of .£(Z, L*(p)) be integral? This is an easy consequence of the follow-
ing two propositions : )

4.3. ProPosITION. For E a Banach lattice the following statements
are equivalent :

(a) E is order isomorphic to an M-space

(b) For every positive Radon measure p. we have :

T e L(E, INp)), T > 0 implies T = integral

(¢) Te L(E, ), T > 0 implies T = nuclear.

Proof. (a) = (b). Let T € £(E, L*u)), T > 0. The conjugate of B
is order isomorphic to a space L'(v) and thus T* € £(L*(w), L*(v)) is absolu-
tely summing. On the other hand it was remarked by Singer [31] that
every majorized operator defined on a space C(S) is also integral. Parti-
cularly T* is integral, etc.

(b) = (e¢). Since [!is a separable dual every integral operator T € £(E,
1) is also nuclear. See [8] §4, n° 3, Corollaire 3.

(¢) = (a). For every {wz}}, e L[E*], xy >0, we can consider the
following positive operator T € £(E, [*) given by :

T(x) = {K, 230}
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From hypothesis, T' is nuclear and therefore integral. An LY(p)-valued
integral operator maps normed bounded subsets into order bounded sub-
sets. See [8] Theorem 11 for details. Therefore {x}}, € /{E*} and thus
(see Theorem 3.1) E* is order isomorphic to an L'-space, g.e.d.

The next result gives a simple characterization for alM-spaces by

using the absolutely summing operators :

4.4. PROPOSITION. A Banach lattice E is order isomorphic to an aM-
space if, and only of, every L'(w)-valued positive operator defined on E is
absolutely summing.

Proof. The necessity is clear. The sufficiency. First remark that
every x* € E*, #* >0 defines naturally a relation of equivalency :

x ~ y if, and only if, o*(|z — y|) = 0.
The completion of E/~ with respect to the norm :
l@llas = a*(|2])

is an L-space denoted by LY(x*). From hypothesis it follows that the
canonical mappings E — LY(z*) are all absolutely summing which implies
that F is an aM-space, q.e.d.

4.5. Remark. Let E be a Banach lattice order complemented in some
M (respectively alM)-space. Then E is order isomorphic to an M-(aM-)
space. More generally let B be a Banach lattice and Z an M- (or an aM-)

space such that there exist two continuous operators Pe .2(Z, E), Qe

€ L(HE, Z) such that P > 0 and PQz = z for every x€ E. Then FE is
order isomorphic to an M-(aM-) space.

Finally we state three useful remarks about the al-spaces.

4.6. Remark. The dual of an aM-space E is a Banach lattice having
order continuous topology. This follows from 2.3 above. In fact every
{3}, € L[E*], 27 > 0, defines an absolutely summing operator T € L(E, [1)
by the formula :

T(z) = {< z, T: >}n

Every absolutely summing operator is weakly compact ([8] § 4, n° 6 Lem-
me 17) and thus the restriction of T* to ¢, is also weakly compact. Clearly
this restriction is given by :

T*({a,})= ¥ a,?.

From Orlicz’s result cited in section 2 above it follows that {x*}e
€ [{(E*) q.e.d. '

4.7. Remark. An aM-space E cannot be order isomorphic to a space
. Here we consider only the case 2 < p < . For 1 < p < 2 see [11].
Suppose that E satisfies to (aM). Since the canonical mapping 4, : £ —[*
is absolutely summing ([25] 2.4.2) it follows that :

TexLlr, ('), T >0 implies T o4, = nuclear.
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In fact, the product of two absolutely summing operators is a nu-
clear. See [8] Theorem 14 for the proof.

On the other hand (see [25] 3.1.10) an operator 7 e £({, {}) given
by a matrix {a,}; ; is nuclear if, and only if :

Y sup la;| < o,

i=1ielN

Consider a sequence {a,};€l’, a,>0, and Za; = . It defines a
positive operator T € .2({, {) as follows :

T({wn}n) = {a’nxn}n'

Clearly the product To¢, is not a nuclear operator, q.e.d.

This answers to a question posed by Jameson [11].

The fact that an M-space cannot be isomorphic to a space L?(y)
(1 < p < ) was first remarked by Grothendieck [7].

4.8. Remark. The second dual of an aM-space is also an aM-space.
In fact, let us consider an operator T € 2(E**, L'(w)), T > 0. The restric-
tion of T to E is a positive operator S € .2(E, L'(p)). Then 8 is absolu-
tely summing and therefore ([8] ch. 1, Lemma 17) weakly compact, which
implies that T = S** It remains to observe that the biadjoint of an
absolutely summing operator is also absolutely summing ([8] ch. 1,
Lemme 17, Corollaire; in the termindlogy of Grothendieck absolutely
summing = semi-intégrale droite) q.e.d.

5. APPLICATION TO THE NUCLEAR VECTOR LATTICES

We first present a brief survey of the main properties of the p-abso-
lutely summing operators. See Pietsch [26] for details.
Let E, F' be two Banach spaces and 1 < p < oo.

5.1. DEFINITION. An operator T' € 2(E, F') is said to be p-absolu-
tely summing if it verifies the following equivalent conditions :

(7,-1) T([B]) C {F}

(m,.2) There exists a positive Radon measure p. on the unit ball 8* of E*
such that :

| T < §|< @, @* > dp (%)

for every x € E. Instead of 8* we can consider here any weak*-closed
subset K C 8* such that || #| = sup |{ @, #* )| for every z € E.
m‘ Est

(w,.3) There exists a constant € > 0 such that for arbittary @, «,, ...,
z, in B :
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S Ta < csup{z <,y a* l”}-

Denote by II(E, F) the vector space of all p-absolutely summing
operators T e L(E, F).

5.2. PROPOSITION *. If E is a Banach space and T e O(E, L*(w))
maps the unit ball of E into an order bounded subset of L*(u.) then T € IT,
(£, F) 1 < p < o).

Proof. For p=1 this result was obtained by Grothendieck [8] ch. 1,
Theoreme 11. The general case involves only slight modifications by
using the lifting theorem in [10] instead of the Dunford-Pettis lifting
theorem i.e. for every positive Radon measure p. defined on a locally com-
pact Hausdorff space 8 there exists a function o: S — (L®(w))* such
that :

(i) Jas)=1, sed.

(ii) The function s —<{f, «(s)> is p-measurable and p-equal
with f, whenever fe L*(p).

Finally remark that for E an aM-space, p = 1 and T > 0 our asser-
tion follows immediately from the conditions aM and (L%, a) above.

5.3. Remark. Let E be an aM-space and 1 < p < oo. Then

T € &(E, I*(v)), T > 0 implies T eII(E, L*(v)),

and thus we can reformulate Theorem 3.1 above as follows :

A Banach lattice E is order isomorphic to an abstract LP-space if,
and only if, it verifies the following two conditions :

(L*.a") For every aM-space Z we have :

TeXZ, E), T >0 implies Tell(Z, E)
(L*.b) | Za;]P < v Z [l )7,

for every finite family {z;}, of disjoint elements of E.

We shall prove only that (L?.a’) = (L”.a). In fact, let us consider a
sequence {x,}, € '[F], x, > 0. It generated a positive operator T € £(c,,
E) given by:

T({(Z,,}) = i ULy «

From hypothesis it follows that T is p-absolutely summing which implies
that {a,}, €e[’{E}. On the other hand it was remarked by Pietsch [26]
Satz 17, that every p-absolutely summing operator is weakly compact, '
which implies (see the proof of 4.6 above) that {z,!, e /(E), q.e.d.

The next result was obtained by Pietsch [26] Theorem 4 (see also [8]
ch. 1, Théoréme 14 for p =1):

4 See also Kwapien S., On a theorem of L. Schwartz and its applications to absolutely
summing operators, Studia Math., 38 (1970), 193—201. -
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5.4. THEOREM. Let 1 < p, ¢ < o, E, F, G Banach spaces, T €ll,
(E, F) and S €Il(F, G). Then :

a) If +=<1, 8Tell(E, &),

| =
|~

|~

b) If

1o seTenyE, 6)
g

==

~

In other words the product of 2p p-absolutely summing operators
is a nuclear operator.

5.5. Normed spaces which may be associated canonically to a locally
convex space E.

Let p be a continuous seminorm on E. Denote :

N,={zeE; p(x) = 0}.

Then E/N, = E, is a normed space with respect to p. Given two con-
tinuous semi norms p and ¢, p < g, there is defined a canonical map-
ping E, — E, which is continuous. We can extend this mapping to a

mapping from K, to E,. Here the cap denotes the completion.

For U an absolutely convex closed neighbourhood of 0 denote by
P, the semi norm associated and by E; the normed space K.

For every absolutely convex bounded subset A C E denete by E,
the vector space generated by A and endowed with the norm :

|z, = inf {A>0; xerd).

There exists a natural duality between the spaces E; and E .

5.6. DEFINITION. A locally convex vector lattice E is said to be
locally (respectively locally*) an L!-space if there exists a fundamental
system (X cf absolutely convex closed solid neighbourhoods of 0 (bounded

subsets of E) such that the Banach lattices E '+ A€ot be all Ll-spaces.
Similar notions are introduced for M-and L*-spaces.

An important class of locally convex vector lattices which are locally
M-spaces and L?-spaces (1 < p < o) is the class of all nuclear lattices.
This follows easily by using the techniques in [25]especially 6.1.2 and 6.1.3.

Recall that a locally convex vector space E is said to be nuclear
(nuclear*) if for every continuous semi-norm p (for every absolutely con-
vex bounded subset A C E) there exists a continuous semi norm g,
p < ¢ (an absolutely bounded subset BC E, ACB) such that the cano-

nical mapping E, — E, (respectively E > 2473) be absolutely summing.
For a detailed account of the nuclear vector spaces see [8] and [25].

The following' result holds :
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5.7. THEOREM. Let E be a locally convex vector lattice. Then E is a
nuclear (nuclear*) vector lattice if, and only if, it satisfies the following
conditions :

(Ny) E is locally (locally*) an M-space,
(N,) E is locally (locally*) an LP-space for some 1 < p < 0.

Proof. It suffices to prove only the sufficiency. Or this follows
from 5.3 and 5.4 above.

For p =1 this result was earlier establishedd by Popa [27].

APPENDIX CONCERNING THE ORDER ON BANACH SPACES

The aim of this section is to prove the existence of a Banach space
which does not admit any structure of Banach lattice. A result of Hogbe
Nlend [9] asserts that every Banach space is the strong dual of a sui-
table nuclear space and thus the result above and the Komura - Koshi’s
characterization for nuclear lattices in [15] imply together that there exist
nuclear spaces which are not isomorphic to a space of generalized se-
quences. However the basis problem in the Frechet nuclear spaces (i.e.
Need every Fréchet nuclear space be isomorphic to a space of sequen-
ces?) remains still open.

That the order problem has a negative answer for the locally con-
vex vector spaces was earlier remarked by Schaeffer who proved [28]
that a reflexive lattice is necessarily topological complete. See [14] for an
example of non-complete Montel space.

Our basic tool is the study of Banach lattices whose topological
dual is {&. We need a useful property of £ namely :

LEMMA 1.5 The Banach space [ admits a unique (up to an alge-
braic topologic lattice isomorphism) structure of order complete Banach lattice.

Proof. In fact let us consider {! endowed with a structure of com-
plete Banach lattice. Since (! is a separable dual it follows from 2.4 above
that its topology is order continuous and therefore each order interval
in ! must be relatively weakly compact (2.3 above). On the other hand
every relatively weakly compact subset of {! is relatively compact. From
[33] Theorem 1 it follows that the order considered on £ is discrete
i.e. it is the coordinatewise order associated to a suitable unconditional
basis of {*. Or it was remarked in [18] Theorem 1 that [ has (up to equi-
valence) a unique unconditional normalized basis.

Recall that a basis {«,}, is called normalized if | z,|| = 1 for every
n € [N. Two bases {x,}, and {y,}, of a Banach space X are said to be
equivalent if there exists an invertible linear operator T € £(X, Y) such
that Tz, = y, for every n € [N.

From Lemma 1 above we deduce the following :

5 Added in proof, September 15, 1974. After this paper has been sent to the printer
we found this property stated without proof in Classical Banach Spaces (Lectures notes
in Math., Springer-Verlag n° 338, 1973) by Lindenstrauss J. and Tzafriri L.
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LEMMA 2. Let X be a Banach laitice whose topological dual is (.
Then X is isometric to a subspace of a space C(K) consisting of all the func-
tions f € C(K) satisfying a set Q of relations of the form :

f(ka) = A (R3),

where k;, ke K, 2,eR, ae Q. In other words X is a G-space in the termi-
nology of [16].

Proof. From Lemma 1 it follons that there exists an algebraic topo-
logic lattice isomorphism ¢ : {! - X*. Denote by iy: X — X** the cano-
nical mapping. Then X** = [* as Banach spaces and Z — p¥oiy(X) is
a Banach sub-lattice of [®. A classical result due to Kakutani [13]
implies that Z consists precisely from all the continuous functions f defin-
ed on the Stone-Cech compactification of IN and satisfying a set Q
of relations of the form

~

9* o ix(2)(ka) = Aap* o ix(2)(k7)

for every € X. On the other hand ¢ is an algebraical isomorphism and
our result follows.

We can establish easily the existence of Banach spaces which do
not admit any structure of Banach Lattice. In fact, it was remarked by
Lindenstrauss [16] that there exist Banach spaces whose topological dual
is [ and which are not G-space e.g. the space (with the sup norm) of

all convergent real sequences {x,}, such that lim z, = m-

fi— 2
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